Accelerator-Aware In-Network LLoad Balancing for
Improved Application Performance

Hesam Tajbakhsh*§, Ricardo Parizotto'¥, Miguel Neves*, Alberto Schaeffer-Filho!, Israat Haque*
*Dalhousie University, TUFRGS

Abstract—The end of Moore’s law has sparked a surge on
programmable accelerators (e.g., SmartNICs, TPUs) for con-
tinued scaling of application performance. However, despite
the great success in offloading tasks from the CPU, we still
lack proper mechanisms for balancing load among the multiple
computing units present on current systems. On the one hand,
traditional load balancers (either software or hardware-based)
have no visibility of the different accelerators in a server and
can only dispatch requests at a per-server granularity. On the
other hand, emerging offloading engines can assign tasks at a
finer-granularity (e.g., per-accelerator), but are hosted by the
accelerator itself and thus waste precious resources for balancing
load rather than processing it. This paper presents P4Mite,
an accelerator-aware in-network load balancing system. P4Mite
is based on two key insights: i) using programmable switches
for load balancing traffic among different accelerators (and
also the CPU) located in the same server; and ii) collecting
statistics from each accelerator on demand for increased load
visibility. We implement a P4Mite prototype on top of Intel
Tofino and a Mellanox SmartNIC and evaluate it using real-world
applications, including machine learning inference (VGG-16) and
DNS. Our results show that P4Mite reduces flow latency by up
to 50% and also makes the system handle 10-20% more load
compared to standard server-level load balancing approaches.
Moreover, it can process at least an order of magnitude more
requests than a SmartNIC-based load balancer, with negligible
latency and memory footprint.

I. INTRODUCTION

The combination of recent slowdowns in CPU performance
improvement, rapid increase in network speeds, and sharp
growth in data volumes impose strain on system architects to
cope with the ever-increasing application demands. As a viable
alternative, many vendors are pushing the development of
programmable accelerators to top up the server processing ca-
pacity. These accelerators include network (e.g., SmartNICs),
storage (e.g., programmable SSDs), graphics (e.g., GPUs,
visual compute accelerators), and miscellaneous (e.g., FPGAs,
TPUs) devices, usually connected to the server through PCI
express slots. Altogether, they have proven to be quite useful
in offloading a variety of tasks from the CPU, freeing the latter
to work on the most critical ones.

Current accelerators represent a significant amount of the
total server processing capacity, e.g., our initial experiments
showed that a single SoC-based SmartNIC could boost up to
20% of the original server performance. However, we still
lack proper mechanisms for balancing load among multiple
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accelerators in a system. As a result, we see significant appli-
cation performance degradation and resource under-utilization,
especially at a larger scale with hundreds of servers in a
pool. Traditional load balancers (e.g., Tiara [1], Cheetah [2],
SilkRoad [3], Beamer [4], Maglev [5]) have no visibility of
any accelerator in a server and can only dispatch requests at a
per-server granularity. Therefore, these solutions may lead to
severe imbalance and consequently latency inflation. On the
other hand, emerging offloading engines ([6], [7]) can assign
tasks at a finer granularity (i.e., per accelerator) but rely on
either the CPU or the accelerator itself for balancing load and
waste precious resources.

In this paper, we present P4Mite, an accelerator-aware
in-network load balancer. P4Mite uses emerging hardware
programmable switches, e.g., Intel Tofino [8], to balance
connections among multiple CPUs and accelerators in a server
pool and therefore explore their full capacity. To achieve its
benefits, P4Mite needs to overcome a few challenges. First,
the set of accelerators in a pool constitutes a heterogeneous
environment and thus requires specific load balancing policies
to avoid overwhelming the least capable resources. Second,
balancing load at such a fine-granularity, i.e., per accelerator,
puts an extra strain on the already constrained (e.g., in terms
of memory) programmable switch ASICs. We overcome these
two challenges by collecting load statistics from each accel-
erator on demand and combining a mix of data compression
techniques for efficient policy representation at the switch. In
particular, P4Mite relies heavily on hashing, bit mapping, and
indirection to save switch memory space.

We implement a P4Mite prototype as a hybrid of P4 [9] and
Python and evaluate it on a testbed containing an Intel Tofino
switch, a Mellanox BlueField SmartNIC, and a commodity
server. We evaluate the system performance and scalability
using both microbenchmarks and real-world applications. Our
results show that P4AMite reduces flow completion time by up
to 50% and also makes the system handle 10-20% more load
compared to standard server-level load balancing approaches.
We also observed that our in-network solution outperforms
load balancers running on SmartNICs by supporting at least
10x more requests. Finally, P4AMite incurs a small footprint
on programmable switch ASICs, requiring less than 6% extra
resources to support more than 50K concurrent connections.

In summary, this paper makes the following contributions:

« we propose P4Mite, an accelerator-aware in-network load
balancer that can use emerging programmable switches



to distribute connections among the multiple computing
units (e.g., CPU, SmartNIC, FPGA) in a pool of servers.

« we prototype P4Mite on top of a hardware switch, a SoC-
based SmartNIC, and a commodity server and make our
code open source [10].

o we evaluate P4Mite using three real-world applications,
including machine learning inference and a DNS server,
and show its superiority compared to state-of-the-art load
balancing designs.

II. BACKGROUND AND MOTIVATION

This section summarizes server accelerators. We assess the
performance of a SmartNIC accelerator compared to an x86
CPU and show how programmable switches can assist in
dispatching tasks between them.

A. Server accelerators

Server accelerators are hardware devices connected to the
CPU and that are capable of running (parts of) an application
faster [11]. Over the last decades, they have evolved from
simple co-processors specialized at a given functionality (e.g.,
floating point operations, encryption/decryption) to entire sys-
tems comprising programmable processors, onboard memory
and networking capabilities. As a result, many modern cloud
vendors leverage accelerators to provide services, such as
Google’s TPU-based AutoML [12] and Microsoft Azure’s
FPGA-based machine learning services [13]. Other examples
of existing accelerators are SmartNICs [14], programmable
SSDs [15], GPUs [16] and visual compute accelerators [17].

Server accelerators are typically attached to a PCle slot and
coordinate with each other and the CPU through the system
bus. From a software perspective, many accelerators (e.g.,
Mellanox BlueField SmartNIC [14], Intel Visual Compute
[17], Broadcom STT100 programmable SSD [15]) appear as
an independent machine running their own operating system
and having their own IP address. These accelerators can be di-
rectly reached through standard tools (e.g., TCP/UDP sockets)
thanks to IP over PCle tunneling [18]. Other accelerators (e.g.,
FPGAs) cannot run an operating system and rely on firmware
to communicate using the TCP/IP stack [19]. Finally, a more
general class of accelerators (e.g., GPUs, most SmartSSDs)
typically do not implement a TCP/IP stack and rather adopt
RDMA for inter-device communication [16]. In this case, a
translator (e.g., [18]) can still be used to expose the network
stack that is more convenient to the client application.

B. Roofline Benchmark

To understand to which extent we could benefit from
existing accelerators to improve applications’ performance and
make a more informed load balancing design, we assess the
performance of an example accelerator (i.e., a SoC-based
SmartNIC [14]) compared to an x86 CPU in this section. We
used the roofline tool [20] to characterize their performance.
The tool runs a kernel driver inside the operating system of
each processing unit, i.e., both SmartNIC and CPU, which
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Fig. 1: PISA Architecture.

TABLE I: Roofline’s Results.

[ Device GFLOP/s |
CPU (x86) 91.0
SmartNIC (arm) 17.6

measures the maximum throughput of the respective set of
processing cores.

Table I shows the results for the maximum number of
floating point operations per second each processing unit can
afford (in GFLOP/s). We can observe that even though the
SmartNIC can handle around 5x less operations than the
server CPU, it is able to provide up to 20% extra comput-
ing resources to the latter. Ultimately, that can significantly
speed up the application request processing, specially in high
load scenarios. Based on these observations, we argue that
one can improve the performance of networked applications
(e.g., machine learning inference, web serving) by carefully
balancing their requests among the multiple accelerators in a
server.

C. Programmable Switches

Switch programmability means that the switch functionality
can be defined by the network owner using software artifacts.
The switch functionality is often expressed using domain
specific languages and then is tailored into a data plane
model [9]. The resulting code is then compiled into a packet
processing device that supports the data plane model. There
are different programming models for the PDP, such as the
data flow abstractions, and the protocol independent switch
architecture (PISA) [21]. In this work, we will focus on
the PISA architecture, which is shown in Figure 1. In the
PISA programming model, packets go through a parser, which
instantiates user-defined protocols. After the parser processes a
packet, it follows a pipeline of control flows and match+action
tables. Finally, packet headers are emitted by a deparser.

In this work, we use programmable switches to build an
accelerator-aware in-network load balancer. Load balancing
between accelerators has a few characteristics that make
them suitable for programmable switches. First, by running
it on programmable switches, we decrease the amount of
traffic sent to the device running the applications. Second,
load balancing can be achieved with simple ALU operations,
making it suitable for massive connection concurrency on the
programmable data plane hardware. To show the potential of
our idea, we consider SmartNICs as the accelerator to build
a proof-of-concept. Still, our solution can be generalized to
other accelerators, such as FPGAs and programmable SSDs.



III. PAMITE DESIGN

This section presents P4Mite, a novel accelerator-aware
load balancing system. P4AMite combines inter-server load
balancing mechanisms (e.g., ECMP, connection ID hashing
[5], power-of-k-choices [22]) with intra-server balancing at
the accelerator level. More specifically, the latter includes
dispatching connections to either the CPU or any server
accelerators (e.g., a SmartNIC or GPU) based on estimations
of their load. We can fully deploy our system on programmable
switches, which enables it to support many connections with
high-throughput and low latency. P4Mite also ensures per-
connection consistency (PCC) by keeping track of existing
connections on a highly optimized connection table.

A. Challenges

We address two major challenges in P4Mite:

Load balancing in a heterogeneous environment. Unlike
different servers in a pool, which tend to be uniform [23],
[24], accelerators inside the same server typically form a
heterogeneous system (e.g. a GPU and a SmartNIC have
substantially different architectures). Even two accelerators of
the same kind, such as two SmartNICs, can present varying
capabilities [25]. Unfortunately, policies that perform well in
a homogeneous setting can suffer from unacceptably poor
performance in heterogeneous ones. To address this issue,
P4Mite carefully collects load statistics (e.g., CPU utilization,
request processing latency) from each computing unit in a
pool. That enables our system to make more informed de-
cisions and balance traffic according to the actual resource
spare capacity. In addition, it allows P4Mite to take micro-
architectural differences into account and assign priorities to
accelerators. For instance, it can prioritize assigning a new
request to a slightly more loaded, but beefy, CPU rather than
a spare but wimpy SmartNIC.

Processing a large number of concurrent flows. Modern
programmable switches cannot support many concurrent flows
due to their limited memory (around 50-100 MB SRAM) [3].
As a result, previous work has proposed alternatives such as
hybrid load balancer architectures, i.e., hardware/software co-
designs [1] and effective compression approaches, e.g., storing
connection hashes rather than the actual 5-tuple or using indi-
rect VIP-to-DIP mappings [3]. P4Mite requires an extra level
of complexity on this matter as it needs to map connections to
computing units rather than servers, i.e., a more fine-grained
process. Even though P4Mite still relies on a connection table
to keep track of a connection’s state (and thus ensure PCC),
we minimize its memory footprint with a combination of
data compression techniques for efficient policy representation.
More specifically, our system uses hashing and bitmaps to
store connection and accelerator state, respectively, and breaks
down the VIP-to-DIP mapping into a two-step process, i.e.,
mapping a VIP to a server code and then the latter into a
DIP'. We assess the performance of our compression approach
in Section V-E.

IThis form of indirect mapping is complementary to the one in [3], which
uses the same technique specifically to reduce the connection table size.
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Fig. 2: P4AMite overview.

B. Overview

Figure 2 shows P4Mite’s architecture overview. The system
consists of a programmable switch, a controller, and server-
based agents. PAMite maintains the connection state at the
programmable switch (stateful load balancing) and forwards
requests entirely in the data plane. As a result, it can afford
advanced load balancing policies with minimum impact on
the flow performance. Running dedicated servers is a common
practice on current data centers [26]. As such, we assume each
processing unit, i.e., server CPU or accelerator, is dedicated
to a single application (e.g, data analytics, VPN tunneling, or
machine learning inference), even though the rack as a whole
can run multiple distinct services.

Programmable switch. The switch is the core component
of P4Mite. It is responsible for load balancing connections
at the transport layer (i.e., L4 load balancing). P4Mite is
fully compatible with the TCP/IP stack and does not require
any modification on applications’ client or server sides>. We
assume every accelerator has its own IP address, i.e., can
be uniquely identified, and rely on PCle switching [27],
[28], [29] to deliver packets to the right accelerator once
the packet reaches a server port. As modern accelerators can
usually run their own network stack [30], sometimes even a
whole operating system [14], [31], it makes sense assigning a
separate network namespace (or IP address) for each of them.

Controller. The P4Mite controller is responsible for im-
plementing the desired load balancing policy (e.g., priori-
tizing the CPU rather than the SmartNIC when both have
spare resources) on the switch by installing the associated
forwarding rules. It also updates the switch configuration
whenever there is a change in the server pool such as the
addition/removal of a server or accelerator. All connections
are handled by the switch which avoids making the controller
a bottleneck. Furthermore, the controller does not interfere
with other protocols or network functions as it only manages
its own state, including the load balancing structures from the
data plane.

Server agents. PAMite runs an agent on each processing
unit (i.e., CPU or accelerator) in an application server. The
agent monitors both system and service level metrics (e.g.,

2Some accelerators such as FPGAs may require re-implementing an x86
application (e.g., in VHDL) to be able to run it on their specific hardware.
That is transparent to PAMite though.
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Fig. 3: P4AMite’s data plane layout. Dotted red lines represent packets for updating an accelerator state. The Blue solid line
represents the path for packets from connections. Green dashed lines represent packets from existing connections.

CPU utilization, request processing latency) and provides load
status updates to the network load balancer. We reserved an
L4 port to distinguish status update packets from ordinary data
packets. Using a dedicated packet for status updates rather than
piggybacking this information on data packets has two main
advantages: i) servers can send replies back directly to clients
instead of traversing the load balancer (a.k.a. direct source
return [32]), which can be useful depending on where the load
balancer is placed; and ii) agents can report more accurate
information as the lag between the measurement time and its
submission to the switch is minimized. To reduce the agent
overhead, we also opted for it to report on a threshold-basis,
meaning a status update packet will only be sent when the
threshold (e.g., a maximum CPU utilization) is triggered. For
simplicity we assume agents report binary states (e.g., busy or
available) through the rest of this paper, although more fine-
grain statuses (e.g., percentage of usage) can be considered as
part of our future work.

C. Data Plane Design

Figure 3 shows the pipeline layout of P4Mite’s switch data
plane. Upon receiving a packet, the switch first checks whether
it is a load update or a connection data packet by looking
at its L4 ports. P4Mite performs a register update for the
former (red dotted arrows). In this case, the register array
(Accelstate) key and values are, respectively, a unique
identifier to a server (S—code) and a bitmap depicting the
server accelerators’ state, including the CPU. For example,
the bitmap “10” represents a state in which the CPU is busy
(and thus cannot serve new requests) but the accelerator, e.g.,
a SmartNIC, is available. The length of the bitmap is equal to
the number of accelerators in a server plus one while the size
of the register array, on the other hand, is proportional to the
number of servers in the pool. Using bitmaps and identifiers
(rather than actual IP addresses) helps us reduce memory
consumption in the switch. Moreover, both the server code
and status information are embedded in an update packet by
a P4AMite agent.

Connection data packets can be either incoming or outgoing
ones, which contain packets received from clients and request
replies, respectively. Whenever handling an incoming packet,

P4Mite uses a bloom filter to check whether it is a new
connection or not. The bloom filter enables P4Mite to read and
update a connection state without any involvement from the
control plane. Even though false positives may happen (e.g.,
due to hash collisions [33]), these are negligible as long as the
filter size is large enough to handle the number of connections.
We leave incorporating more efficient data structures (e.g.,
Cuckoo filters [34]) into P4Mite’s design as future work.

If a packet comes from a new connection (bloom filter
Miss), P4Mite hashes the extracted header fields, i.e., 5-
tuple, to determine a destination server (ServerTable). The
lookup result is a server-level load balancing decision and any
stateless load balancing policy (e.g., ECMP [35], WCMP [36])
can be deployed at this point. We opted for stateless load
balancing policies at the server-level as those do not depend
on the number of active connections and thus can save us a
significant amount of memory. The downside of this approach
is the non-negligible imbalance among servers (up to 30% in
the worst case [5]) that can appear depending on the traffic
distribution. The fact accelerators can also process requests
in P4Mite’s design (in addition to the CPU) can significantly
amortize this imbalance though.

After a server is chosen, P4Mite retrieves its load state and
uses the information, i.e., server and load, to decide the final
packet destination (DIPTable). Each entry in the DIPTable
can direct packets to a different accelerator and a network
operator can use it to deploy various load balancing policies at
the intra-server level. We explore the performance of different
intra-server load balancing policies in Section V-C. P4Mite
stores its load balancing decisions (i.e., each connection state)
at a connection table (ConnTable). As a result, it ensures all
packets from a connection are always delivered to the same
DIP even if the pool of servers or the load balancing policy
changes (a.k.a. per-connection consistency [3]). Subsequent
packets from an existing connection can also be directly
matched by the connection state table (bloom filter Hit),
saving the network device a few cycles.

While the connection table is the most memory-expensive
structure on P4Mite’s design, its scalability is a well-known
research problem and a number of techniques (e.g., hashing
and indirect mapping [3]) are widely discussed in the literature



to try to reduce its size. These techniques are orthogonal to
P4Mite and can be used in a complementary way. Unlike
incoming data packets, outgoing ones do not need to be
balanced and can skip most of P4Mite’s blocks (the only
operation really needed is a backwards translation from a DIP
to a VIP). We omit blocks associated with outgoing packets
from Figure 3 for simplicity.

IV. IMPLEMENTATION

This section describes the P4Mite prototype implementa-
tion. Our code is publicly available at [10].

P4Mite controller and switch. We have developed P4Mite
switch and its controller as a hybrid of P4-16 and Python,
respectively. In total, both modules have approximately 350
lines of code. We implement the ConnTable as an array of
50K registers each containing a 16-bit index and use CRC16
to compute hashes. The ServerTable is also an array of
registers with a size corresponding to the target number of
servers. We retrieve server state (AccelState) as packet
metadata and use it to match the DIPTable, which is a
match-action table based on exact match. The switch uses
standard IPv4 tables to do packet forwarding. Finally, we target
our code to the Tofino Native Architecture (TNA) model.

P4Mite Agents. We deployed the P4Mite agents in Python
(~150 lines of code). The agents monitor the request process-
ing latency using tcpdump and use it as metric to decide
whether to report to the load balancer or not. We run tcpdump
in “immediate-mode” so that agents can process mirrored
packets on-the-fly. Even though we report results assuming
the request processing latency as the main metric, our agents
can be easily extended to also monitor additional metrics such
as CPU utilization (e.g., using top) and/or network statistics
(e.g., using iftop). We configured the P4Mite agents to
encapsulate load reports and send them to the switch using
UDP packets.

V. EVALUATION

In this section, we use testbed experiments to evaluate
P4Mite’s prototype. The experiments focus on answering the
following questions: (i) how P4Mite scales with an increasing
load (i.e., number of requests and request size); (ii) how
our system compares to traditional load balancing approaches
(e.g., ECMP, WRR); and (iii) how P4Mite compares to other
load balancer designs.

A. Experimental Setup

The experiments were conducted in a testbed with two hosts
connected by a Wedge 100BF-32X 32-port programmable
switch with a 3.2Tbps Tofino ASIC [8]. One host is used as
the client, and the other acts as the server, which contains
a SoC SmartNIC. The server is an Intel(R) Xeon(R) Silver
4210R CPU @ 2.4GHz, with 10 cores and 32GB memory. The
SmartNIC, on its turn, is a dual-port SFP28, PCle Gen3.0/4.0
x8, BlueField(R) G-Series, with 16 cores, 16GB on-board
DDR4 RAM and crypto accelerators enabled. We prioritized
the host CPU when balancing packets in our experiments
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Fig. 4: Microbenchmarking results.

and configured its agent to report based on a combination of
thresholds and time intervals for highly computation-intensive
applications. That was necessary to compensate the increased
performance gap between the CPU and the SmartNIC in these
scenarios, when a single request may be enough to overwhelm
the SmartNIC. In this case, we configured the CPU agent
to send a second load status report immediately (i.e., within
5 miliseconds) after a threshold is triggered to avoid late
arrivals from SmartNIC reports. Note to mention, the agent
adds approximately 5% load on the server’s CPU.

B. Microbenchmarks

We use synthetic workloads to investigate the effects of the
request rate and request size on the performance of P4Mite. We
implemented both an application capable of performing differ-
ent amounts of floating-point operations for the workloads and
a client application capable of sending different numbers of
requests per second (RPS). Each request triggers a specific
amount of computation in the server, which aims to keep the
server busy and overload its CPU usage. Figure 4 presents the
results of using the synthetic workloads. We performed two
types of experiments using the micro-benchmarks: firstly, we
evaluate how our solution behaves by varying the request rate;
secondly, we assess how our solution behaves by varying the
request sizes. In both experiments, we tested three different
thresholds for the agents to send a load report. Next, we
discuss these experiments in detail.

Request Rate. Figure 4a presents results showing how
P4Mite behaves under different request rates. We configured
the microbenchmark to run workloads of 2 Gflop of computa-
tion per request, varying the request rate. On the flip side, we
should set a threshold for the agent running on the server. The
agent sends reports once the computation time in the server
hits the threshold. To rephrase it, we assume computation time
in the server as the decision metric. We run the same workload
using different thresholds for P4Mite (300ms, 1000ms, and
2000ms), which are referenced in the figure as P4Mite-300,
P4Mite-1000, and P4Mite-2000, respectively. We stop an
experiment run if we observe that packets are being dropped?,
which means the server can not handle the number of requests.

3In our experiments, the client assumes that a packet has been lost if either
the latency of a request is 10x higher than when the system is not overloaded,
or if the packet is dropped by the server.
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Fig. 5: The 99th percentile latency for specific applications.

We observe that all scenarios operate similarly up to the
rate of 40 RPS, considering the latency is smaller than the
smallest threshold. However, for 45 RPS, P4Mite-300 has the
best performance since the agent is triggered earlier compared
to the others, and the switch starts sending the requests to
the SmartNIC. For the same reason, P4Mite-1000 has lower
latency than P4Mite-2000. In fact, for P4AMite-2000, the agent
is not triggered at all, as the latency is approximately 1200ms.
The maximum increase in latency occurs for P4Mite-2000
because the server becomes overloaded and, consequently,
multiple packets need to wait in the queue to be processed.
As we can see in the figure, choosing a suitable threshold
for the agent is essential to get a more satisfactory outcome.
Moreover, this gives us evidence that while setting thresholds,
we must consider thresholds that are lower than the latency of
the server when it is overloaded.

Request Size. In Figure 4b we evaluate how P4Mite be-
haves according to different request sizes. We configured the
microbenchmark to run workloads with a fixed request rate of
5 RPS, varying the request size. Similarly to what we did in
the previous experiments, we stopped increasing the request
size when the client started to see packet losses.

We observed that latency increases for all cases as we
increase the amount of computation. For small request sizes,
the difference between using various thresholds for P4Mite
is negligible. For example, for 2 Gflop of computation per
request, the latency is approximately 200ms in all cases. Going
further, with 4 Gflop requests, the server’s latency becomes
higher than 300ms, triggering P4Mite-300’s agent. Likewise,
P4Mite-1000 is triggered at the size of 8 Gflop per request.
Once P4Mite-1000’s agent starts sending reports to the switch,
it works similarly to P4Mite-300. Moreover, because the server
is not overloaded up to this size, these two scenarios have poor
performance since the switch forwards some requests to the
SmartNIC, although the server could still process the requests
faster.

Assuming that the server capacity is roughly 90 Gflops, and
considering a request rate of 5 RPS and a request size of 15
Gflop, the server’s usage reaches 75 Gflops. Further, operating
system tasks and connection management take the remaining
server capacity. At this point, the system starts to become
overloaded, and the latency changes to 1800ms. Due to these
circumstances, P4Mite-2000 performs significantly better for
request sizes higher than 15 Gflop, as it utilizes the SmartNIC
when the server is overloaded.

Finally, we observe that with heavier requests, P4Mite also
starts to drop requests. This occurs because both the server and
the SmartNIC become overloaded. However, this is acceptable
since it takes 18 GFlop for P4Mite to start dropping packets
while the server-only solution drops packets at 16 Gflop.
We also clarify that we used a fixed threshold for different
workload sizes to understand scalability aspects, but we can
optimize different thresholds for each specific request size.
Exploring ways for dynamically adapting the thresholds is a
topic for future work.

C. Application Performance

We have implemented three client-server applications (two
machine learning - VGG16 and KNN - and one network
application - DNS) to compare P4Mite’s performance with
different load balancing strategies. For the sake of simplicity,
all applications are based on UDP requests though P4Mite can
also work seamlessly with TCP ones. We use DNSIib to imple-
ment both a DNS server and client. For (deep) neural networks,
we adopted TensorFlow and TensorFlow Lite to implement
VGG16 on the CPU and the SmartNIC, respectively*. Finally,
for K-nearest neighbors, we used the scikit-learn framework.

We have deployed each application independently using
P4Mite. We also deployed each application using Weighted
Round Robin (WRR) and Equal Cost Multi-Path (ECMP) to
compare our approach to existing ones. We observed in the
Roofline results that the server CPU has 62 more capacity than
the SmartNIC, so we configured WRR to send 1/6 requests
to the SmartNIC and 5/6 to the server. Due to the computing
demand of each application, we varied the rate to hit the
maximum capacity of the system. The maximum rates the
host and SmartNIC handle jointly are 2750, 70, and 24 RPS
for DNS, VGG16, and KNN, respectively. Besides, for DNS
servers, which are not CPU-intensive, we use only one core
of each resource, while for the other applications, all cores are
involved. Finally, we consider 100ms, 150ms, and 300ms as
the threshold for DNS, VGG16, and KNN, separately. These
are 20-30% more than usual delays for the applications.

We ran each test for 30 seconds and measured request
loss and latency for each request. Figure 5 presents the 99th
percentile latency for each application. Like what we did for
the microbenchmarks, we stopped the execution as soon as we
observed a packet loss.

4We were not able to run the TensorFlow framework on the SmartNIC due
to architectural limitations from the latter.
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DNS. Figure 5a presents the results for the DNS application.
Given that DNS is not CPU intensive, both server and Smart-
NIC have the same delay (around 3ms) when their CPU is
not under stress. The blue curve (no balancing) shows that
the server can handle requests up to 80% load. At higher
loads, the server delay increases drastically. Using P4Mite,
the agent sends reports to the switch when the server starts
to get overloaded. Consequently, a portion of the load is
forwarded to the SmartNIC, increasing the maximum rate
by approximately 20%. P4Mite not only avoids overloading
the server but also the offload of requests to the SmartNIC
allows more injunctions to be processed. As such, one core of
the SmartNIC’s wimpy processor can handle 20% more DNS
queries. Regarding ECMP, since it tries to split the requests
between the server and SmartNIC evenly, and considering that
the SmartNIC’s computation power is one-sixth of the server,
the SmartNIC becomes quickly overloaded. Conversely, in
the weighted round-robin, the switch dispatched 5/6 of the
requests to the server and the remaining to the SmartNIC,
enabling it to run faster than both the baseline and P4Mite for
lower rates. However, as we reach 90%, WRR drops packets.
P4Mite beats WRR because it wisely balances the load, while
WRR proactively distributes the load. Nevertheless, WRR has
better performance for less load because P4Mite needs to wait
for the server to start to get overloaded before it is triggered.

VGG16. Figure 5b presents the results for VGG16. Without
any stress, the latencies of the server and the SmartNIC are
approximately 80ms and 120ms for VGGI16, respectively. In
the no balancing scenario, the server can process until 80%
load, but the latency increases sharply after that. In P4Mite, for
loads higher than 80%, the latency grows and the agent sends
reports to the switch, causing a portion of the requests to be
sent to the SmartNIC. P4Mite not only improves the latency
by 50%, but it also can handle 16% more requests. Figure 5b
also indicates that if we use ECMP, the system can handle
only 30% load. We investigated these results and noticed
that the SmartNIC becomes fully utilized, causing packets to
be dropped. Finally, considering WRR as the load balance
approach, we observe that it increases the latency compared
to the no balancing approach when the load is less than 80%.
This occurs because WRR always sends 1/6 of traffic to the
SmartNIC, which performs slower than the server. However,
WRR enables the application to go up to 90% load because
the requests sent to the SmartNIC alleviate the server.

KNN. Figure 5c presents the results for KNN, the most

TABLE II: Amount of resources used by P4Mite.

[ Resource | Usage % |
SRAM 5.1%
TCAM 0.0%
VLIW Instructions 2.6%
Hash Bit 4.0%
Stats ALU 2.1%
Map RAM 5.6%
Exact Match Input Xbar 2.9%

CPU-intensive application in our evaluation. In this scenario,
the baseline solution can handle 75% load until packets start to
be dropped. P4Mite improves the latency and maximum rate
by 25% and 11%, respectively, compared to the no balancing
solution. We could not get better results for KNN because our
SmartNIC is not powerful enough to process heavier requests
within the time constraints. We observe that ECMP handles at
most 40% load, where 20% load is forwarded to the SmartNIC.
Also, the latency for ECMP is higher than other approaches
because the SmartNIC executes KNN requests far slower than
the server. Finally, while WRR works poorly for loads below
70%, it can handle more load than P4Mite. Our investigation
shows that for a load of 90% and higher, requests are lost for
P4Mite because of request time expiration in the server, not
because of packet drop.

D. P4Mite vs. SmartNIC-based load balancer

One of the advantages of P4Mite is its ability to perform
load balancing operations at line-rate. To better assess our
solution, we compare it with a SmartNIC-based load balancer
that runs on a single core® of the Mellanox Bluefield. This
alternative implementation is an L4, software-based load bal-
ancer, distributing the load among the host and the SmartNIC,
and its load-balancing logic is similar to P4Mite’s. Figure
6 compares P4Mite and the SmartNIC load balancer for an
increasing number of requests per second. For less than 700
RPS, the SmartNIC-based load balancer is slower than P4Mite.
This happens because all requests should go through the
SmartNIC first, although most of them will be sent to the
host anyway. Further, the SmartNIC-based load balancer starts
dropping packets after 700 RPS. This happened because the
networking resource was fully utilized and could not handle
more connections. Conversely, P4Mite can handle up to 8K
RPS without dropping packets.

E. Resource Consumption

Finally, we measured the resource overheads of P4Mite
when deployed on our Tofino switch. We configured the
switch to support up to 256 servers with two accelerators.
Table II presents the resource usage of P4Mite assuming 50k
concurrent connections. This is close to the maximum number
of connections we can support with a single pipeline stage.
Unrolling our mechanism across different pipeline stages can
enable more concurrent connections [3].

5Although this SmartNIC-based load balancer could work on multiple
cores, fewer resources would be available for processing requests.



We observe that for every switch resource, P4Mite’s over-
head is always less than 6%. P4Mite uses 5.1% of SRAM and
5.6% of Map RAM mainly due to the implementation of the
bloom filters. More specifically, we see that the ConnTable
dominates the usage of these resources to store connection
statuses. Because we use hash functions to map packets to
both the ServerTable and the ConnTable, the Hash Bit
usage is 4.0%. The VLIW is used for writing values into
packets; since PAMite only writes into packets their destination
IPs, VLIW usage is only 2.6%. We are also using only 2.9%
exact match input xbar to perform the exact match to get the
accelerator state and match the DIP table. The bloom filters
also use 2.1% of stats ALU to update the accelerator’s state
or to store state about a new connection. Finally, PAMite does
not use any TCAM, which is an expensive resource.

F. Discussion

Stateful Applications. While P4Mite is extensively evalu-
ated for stateless applications, other applications (e.g., key-
value stores, distributed file systems) may include storing
and manipulating state, either locally or as distributed shared
variables. Further research could explore the overheads (e.g.,
memory and data communication demands) of such applica-
tions as part of the load balancing decision process.

Other load balancing policies. P4Mite load balancing
policies are currently restricted by the information reported by
its agents (i.e., binary flags indicating whether an accelerator
is underutilized or not). Future work could investigate adding
support for more complex policies. For example, collecting
multiple statistics from an accelerator (e.g., CPU, memory and
network usage) and reporting them to the P4Mite switch could
enable policies based on the least utilized resource.

Multiple Accelerators. When compared to state-of-the-art
load balancing approaches, the P4Mite improvements ulti-
mately depend on the capabilities of the available acceler-
ators. For example, we could observe up to a 20% latency
improvement based on our SmartNIC, which is in line with
the results reported in Section II-B. As part of our future work,
we consider extensively evaluating P4Mite’s performance for
balancing traffic across multiple accelerators, including GPUs
and programmable SSDs.

VI. RELATED WORK

In-network load balancing. Many in-network load bal-
ancing solutions have been proposed recently. SilkRoad [3]
leverages programmable switches to implement a layer-4 load
balancer. Instead of storing the 5-tuple connection information,
it uses a hash to overcome switch memory constraints and
support millions of concurrent flows. A similar approach is
proposed in Loom [37], where the authors deploy multiple
bloom filters to compress the connection states. Cheetah [2]
takes a different path and stores information about connection
states into packet headers rather than inside the switches.
In common, none of these approaches have visibility of the
accelerators in a server and can only dispatch requests at a
per-server granularity.

CrossRSS [38] provides a CPU core-aware stateful LB,
where network interface cards (NICs) are used to compute
a hash for the core selection. Charon [39], in turn, uses
an FPGA-based SmartNIC to select the appropriate server
based on their load. In this case, the load balancer receives
load updates over packet headers from agents running on
the servers. Cui et al. [40] use an ARM-based multi-core
SmartNIC to run a lightweight LB. The authors design con-
current connection management mechanisms to cope with the
limited LB performance when accessing shared data structures.
Finally, Tiara [1] improves the performance of stateful LBs
by distributing the task to three types of computing resources:
programmable switches, FPGA-based SmartNICs, and server
CPUs. Specifically, the switch performs throughput-intensive
packet encapsulation/decapsulation while FPGAs/CPU cores
take care of the memory-intensive real server selection. Even
though these load balancers can assign tasks at a finer granu-
larity (e.g., per CPU core), they rely on the accelerators them-
selves such as the SmartNICs to perform the load balancing
decisions, which wastes precious computing resources.

Task offloading to SmartNICs. Previous work has widely
explored offloading tasks to SmartNICs, including distributed
transactions [41], distributed file systems [42], binarized neural
networks [43] [44], and image classification [45]. These works
are complementary to P4Mite and can directly benefit from its
load balancing strategies. IPipe [7] proposes an actor-based
framework for judiciously offloading distributed applications
to SmartNICs. The framework includes an LB that resides
inside the NIC and monitors the overall system resource
utilization. Similarly to other SmartNIC-based load balancers,
IPipe wastes precious computing resources with management
rather than processing tasks. Finally, E3 [6] uses a centralized
resource controller to efficiently place micro-services among
processing nodes (e.g., SmartNICs, server CPUs). Unlike
P4Mite, their resource controller is designed to run on general
purpose servers and cannot process new requests at line rate.

VII. CONCLUSION

We introduce an accelerator-aware in-switch load balancer,
P4Mite, which distributes the load among CPUs and accelera-
tors with different capacities. As opposed to load balancers that
are not resource-aware, P4Mite relies on agents, which monitor
available resources, and performs load balancing based on
this information. We implemented P4Mite on top of a Tofino
switch using P4_16, allocating the load between a server and
an SoC SmartNIC. Our experiments show that P4Mite can
handle 10-20% more load and can reduce flow latency by up
to 50%. P4Mite judiciously balances the load, and does not
send requests to wimpy resources whenever powerful ones are
free. Moreover, PAMite can handle a 10x higher rate compared
to a SmartNIC-based load balancer, without consuming a
significant amount of resources in the switch.
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