IoT Device Fingerprinting on Commodity Switches

Carson Kuzniar*, Miguel Neves*, Vladimir Gurevich', Israat Haque*
Dalhousie University*, Intel BXDf

Abstract—IoT devices such as wearables, voice assistants and
home appliances are becoming an integral part of our lives.
However, these devices still represent a security and privacy
risk with large-scale coordinated attacks often populating the
news. The ability to tell which IoT devices are where in a
network (i.e., to fingerprint them) can help administrators to
mitigate such attacks at the earliest stages. While fingerprinting
solutions exist, they often work offline, depend on sampled data
or rely on payload information to work. In this paper, we propose
PoirloT, a high-speed in-network system for fingerprinting IoT
devices. PoirloT is based only on packet metadata (e.g., length
and direction) and can detect a device as soon as it exchanges its
first packets. We implement a prototype of PoirloT on a Tofino-
based programmable switch and show it can detect all possible
IoT devices on a publicly available dataset. Moreover, PoirloT
runs at line rate and incurs minimal resource overhead on the
programmable switch ASIC.

I. INTRODUCTION

Smart homes are becoming increasingly popular due to the
proliferation of IoT devices and their associated applications.
For instance, 33 million North American houses currently have
a smart thermostat to efficiently utilize energy [1]. Also, the
number of active IoT devices is expected to reach 30 billion
by 2025 [2]. While smart home devices are mostly connected
to a cloud backend for monitoring and remote control, their
network connectivity can enable malicious actors to com-
promise them and launch large-scale coordinated attacks. As
an example, the Mirai botnet could successfully compromise
more than 100K IoT devices and engage them in coordinated
DDoS attacks over the last few years [3]. In addition, home-
based IoT devices have recently raised numerous privacy
concerns [4].

Existing solutions for securing IoT devices at scale invari-
ably involve fingerprinting them (i.e., identifying the device
type, manufacturer and/or event) through different forms of
traffic analysis. Previous work has focused on inspecting
packet payloads, calculating traffic statistics [3]], and applying
machine learning algorithms [6] to detect a particular device.
In common, all these efforts run offline (i.e., based on collected
traces) and require an external compute node to process data.
Unfortunately, this approach faces important issues in terms of
accuracy and speed when dealing with high traffic rates (above
10 Gbps), which are becoming the norm on current networks.

The emergence of programmable switches (e.g., Intel
Tofino) and their high packet processing capabilities (up to
Tbps) opens up an unprecedented opportunity to fingerprint
IoT devices directly in the data plane while traffic passes
through an ISP. ISPs are naturally situated in-between IoT
devices and the cloud backends, and their switches repre-
sent a sweet spot to deploy novel security functions without

introducing much overhead (server-based approaches require
extra bandwidth for collecting traffic and beefy processors to
analyze it). In addition, a single switch can serve multiple
homes, which easily enables deploying a fingerprinting solu-
tion at scale compared to home-based alternatives. Ultimately,
network administrators can use information about detected
IoT devices to quickly react to threats and/or take preventive
measures. For example, they can tweak firewall or access
control rules, configure intrusion detection systems, or reach
out to clients for patching known vulnerabilities as soon as
they know the nature of the subscribed devices.

To realize this view, we propose PoirloT, a high-speed
in-network system for fingerprinting IoT devices. PoirloT
relies only on packet metadata (e.g., length and direction)
to identify a device and can run at line rate on currently
available switches. The system has two major components: a
controller and a data plane module. The controller is primarily
responsible for extracting signatures from packet traces and
generating configuration rules for PoirloT’s data plane. The
data plane, on the other hand, deploys a finite-state machine
(FSM) abstraction to track relevant sequences of packets while
looking for signature matches. We implement a prototype of
PoirloT in P4 [7] and evaluate it on an Intel Tofino switch
[8]. We run our system over a publicly available dataset
containing traces from fourteen popular home IoT devices,
including smart plugs, light bulbs, thermostats, and home
security systems. Our results show that PoirloT can accurately
detect all IoT devices while incurring minimal resource over-
head on the programmable switch ASIC. In addition, PoirloT
can also detect most (above 70%) of the events from the
detected devices. In summary, this paper makes the following
contributions:

o We present the design and implementation of PoirloT,
an in-network system for fingerprinting IoT devices in
high-speed networks.

o We conduct a thorough evaluation of PoirloT using a real-
world dataset and demonstrate it achieves 100% device
detection accuracy. As a bonus, we also show PoirloT
can detect the majority of device events.

o We make PoirloT’s code open source to support repro-
ducibility and encourage further research. Our code is
available at [9]] under an Apache Licence.

The rest of this paper is organized as follows. Section
motivates moving IoT device fingerprinting to programmable
network devices as a feasible solution for high-speed networks.
Section [I1I| highlights previous work. The next section presents
PoirloT’s design in detail. Section [V| describes our prototype

copyrighted component of this work in other works.

Copyright © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

implementation and evaluation results. We discuss some future
efforts in Section [VI] followed by conclusions.

II. MOTIVATION

Existing systems face several challenges when attempting
to detect IoT devices. In this section, we detail some of these
challenges and the benefits a switch-based solution brings to
this scenario.

Volume. Many IoT device fingerprinting systems (e.g., [10]
[S] [LL]) rely on dedicated servers for device detection, either
online or based on full packet captures. These solutions, how-
ever, cannot keep up with the large amounts of traffic on high-
speed links (which often support 10 Gbps nowadays [12]). As
a result, they either face a significant drop in accuracy or take
a long time (sometimes hours or even days) to detect a device.
An alternative would be to set up detection mechanisms
directly on user homes (e.g., by tweaking their home routers),
but that quickly leads to management issues. For instance,
providers would need efficient ways to ensure that detection
rules are always up-to-date. Fingerprinting IoT devices in
the switch data plane removes these speed constraints as the
former can operate at line rate.

Granularity. Large volumes of traffic frequently force net-
work operators to work on highly aggregate and sparsely sam-
pled data (e.g., NetFlow, IPFIX traces) for further inspection
[S] [13]]. Such coarse-granularity is specially harmful for IoT
device detection as many IoT devices (e.g., smart bulbs, plugs)
are silent almost all the time and only send a few packets when
actively used (e.g., turned on/off) [S)]. Programmable switches
can naturally inspect every packet as part of their forwarding
process, so they are able to observe even the shortest IoT
events.

Complexity. Lastly, current IoT device fingerprinting ap-
proaches normally adopt techniques that are based on heavy-
computation methods (e.g., parsing payload information [14],
computing higher-order statistics [[15], applying machine
learning inference [6] [L6]). That not only hinders their appli-
cation in widespread scenarios (e.g., payload-based approaches
cannot process encrypted traffic), but also makes it very
challenging to implement them on high-speed programmable
switches. Thus, we propose a system to overcome the afore-
mentioned challenges and accurately detect IoT devices in
high-speed networks.

III. RELATED WORK

Our work integrates ideas from both IoT device fingerprint
efforts and the growing area of in-network computing. Below
we detail other studies considered in the development of
PoirloT.

IoT device fingerprinting. Prior work on IoT device fin-
gerprinting utilizes a diverse range of techniques to detect IoT
devices in the wild. For example, Peek-a-Boo [[6] can detect
devices in WLANs by sniffing wireless signals and applying
machine learning algorithms over calculated statistics. Home-
Snitch [16] takes a similar approach, but assumes access to
a home router. Bremler-Barr et. al. [17] also position their

work on a home router, but include DHCP features alongside
traffic statistics in their classifier. Wifi Inspector [18] runs
locally on the user’s personal computer and uses expert rules in
addition to machine learning for identifying scanned devices.
IoTInspector [10] also takes advantage of personal computers
to run, but instead requires users to label collected traffic which
is further validated using a set of heuristics. In common, all
these approaches are hard to manage at scale and provide
limited insight from a network-wide perspective.

Afek et. al. [19] expand the perspective by deploying a
hybrid model using a device at the customer’s location and
a virtual network function to monitor many home networks.
Their detection relies on Manufacturer Usage Descriptions
(MUD), so it is dependant on receiving up to date and correct
information from manufacturers. Guo et. al. [[14] and Saidi et.
al. 5] propose new methods to detect devices based on packet
captures at the ISP/IXP level. However, their methods either
rely on payload information (e.g., DNS queries, TLS certifi-
cates) or are targeted at offline processing. PingPong [11] can
identify devices using signatures that consist only of packet
lengths and directions (similar to PoirloT). Pinball [20] builds
on these signatures by analyzing the probability distribution
of lengths rather than order of arrival. Both approaches still
requires mirroring traffic to a dedicated server for analysis. In
contrast, PoirloT can run directly on programmable switches
online and at line rate.

In-network computing. Previous work has shown that pro-
grammable switches are effective at processing large volumes
of information. Instead of detecting IoT devices, P40f [21]]
uses a programmable switch to infer a target operating system.
Rather than packet exchanges, their inference is based on TCP
signatures from a single packet. Meta4 [22] recognizes DNS
requests and responses that pass through a programmable data
plane. The authors explore DNS-based fingerprinting as a use
case, but challenges still exist when dealing with encrypted
traffic. PPS [23] demonstrates overcoming I/O bottlenecks
using switches to perform a keyword (i.e., string) search. It
scans a packet payload using DFAs, but risks packet loss under
heavy loads because of recirculations. PoirloT is complemen-
tary to these efforts and provides a new in-network application
instance.

IV. POIRIOT DESIGN

This section describes PoirloT, our in-network system for
detecting and identifying IoT devices in high speed networks.
PoirloT can be deployed at edge switches by ISP providers to
inspect the communication between a home router and a back-
end infrastructure hosted on the cloucﬂ It makes no assump-
tions about the architecture of the client network, meaning IoT
devices can be either behind a NAT or have their IPs directly
exposed (more common in [Pv6 deployments). We consider
device connections as symmetric, i.e., they traverse the same
edge switch in both upstream and downstream directions. This

ISimilarly, it could also be deployed on the gateway of a campus or
enterprise network.

0110
1011 -
1101 PoirloT controller
Packet Signature DFA Rule Intent
trace extraction | | creation | |generation file
A
Fingerprinting
Report rules
A =

Programmable switch

Cloud
backend

Fig. 1: PoirloT’s architecture. DFA = Deterministic Finite
Automata.

is reasonable since ISPs usually connect an edge switch (also
called broadband network gateway - BNG) directly to a home
router [24][25]. PoirloT does not rely on payload nor sampled
data to work. Figure 1| shows its architecture, which consists
of a controller and a programmable switch.

Controller. PoirloT’s controller is primarily responsible
for extracting signatures from packet traces (which can be
done offline), and converting them into configuration rules
for the programmable switch. A signature comprises simple
sequences of packet lengths and directions (similar to [L1]),
which ensures uniqueness for a significant number of de-
vices. This signature design avoids the need for statistical
computations (e.g., mean rate or inter-arrival time [6]]), which
are difficult to implement on current switches. To convert
signatures into forwarding rules, PoirloT’s controller first
merges them into a deterministic finite automata (optimized
to reduce the total number of rules) before installing the
generated rules into a finite-state machine (FSM) deployed
in the switch data plane. Every signature is also associated
with a policy (e.g., raise an alarm to controller, send traffic
to an IDS for further processing), which operators can use to
implement high-level intents. We explore the deployment and
configuration of PoirloT’s FSM in detail in Section [[V-C|

Switch. The programmable switch is configured to run
PoirloT’s data plane pipeline. Note that the pipeline relies
mainly on direction and length information from packets (as
part of the device signature), which makes it fully compatible
with different protocols (e.g., TCP, UDP). In addition, PoirloT
does not modify any header fields from packets and thus can be
modularly coupled with other network functions (e.g., routing,
monitoring). Further, all of our processing logic fits within
the switch ingress, leaving the egress completely available.
We detail PoirloT’s data plane design in Section Next,
we describe how PoirloT’s controller extracts signatures from
packet traces.

A. Signature extraction at PoirloT’s controller

PoirloT extracts signatures for IoT events (e.g., a device
turning on/off) using the same method proposed by Tri-
mananda et al. [11]. This method uses machine learning to

identify relevant sequences of packet lengths and directions
(i.e., those associated with an event) in a flow. It is based on
the observation that these sequences are mostly unique among
devices and events on the same device. Similar observations
were also made by previous works and have been extensively
validated in an empirical fashion in the literature [26][27][16].
We do not claim PoirloT and its signatures to be applicable for
all ToT devices/events, but rather to be used complementary to
other solutions, e.g., based on traffic shape, volume, or MUD
profiles. The main advantage of PoirloT lies in the fact it is
capable of operating efficiently at high traffic rates (i.e., at a
Tbps scale), particularly on encrypted traffic.

PoirloT’s signature extraction method takes as input a traffic
trace containing packets from/to an IoT device and a set of
event timestamps (i.e., annotations). This information could be
collaboratively provided by users (e.g., as in [10]) or derived
by operators from public datasetsﬂ Once the annotated trace
is ready, PoirloT performs a 6-step process to come out
with a valid signature. First, it filters out packets that are
likely unrelated to the IoT device (Step 1). In particular, this
step will remove packets whose source or the destination IP
addresses do not match that of the IoT device or its controlling
smartphone. In addition, PoirloT also discards packets that do
not lie within a given time window (e.g., 15 seconds) after an
event, based on the user-provided annotation

Next, the signature extraction method reassembles all flows
in the filtered trace (Step 2). We identify a flow by its 5-tuple,
which contains source and destination IP addresses, source and
destination ports, and the transport layer protocol identifier.
Similarly to Trimananda et al., we focus on TCP flows in this
work, though PoirloT’s signature extraction method can also
be applied to other protocols, e.g., UDP, QUIC. In particular,
we only allow data packets (i.e., packets carrying actual
application data) to become part of a signature for a TCP flow,
which increases the chances of this signature to be unique.
The intuition is that control packets, e.g., the ones exchanged
during the TCP handshake, or TLS key negotiation, likely have
the same length among connections and thus could increase
the number of mismatches, i.e., false positives or negatives.

Once flows are reassembled, PoirloT groups consecutive
packets in a flow into pairs according to the rules described in
Equation [T](Step 3). More specifically, it creates a set of packet
pairs where each pair P contains either: a) two consecutive
packets if the packets travel in opposite directions; or b) a
packet and a special identifier (1) (e.g., when consecutive
packets travel in the same direction or in case a packet is
the last one in a flow). We use p; to represent the i-th packet
in a flow.

if p;, pi+1 go in opposite directions 0

otherwise

- (Piy Pit1)s
r= {(pi,u),

2A third alternative is the IoT device manufacturer itself providing the
signature, similarly to creating a MUD profile.
3We adopt the same time window as Trimananda et al. [11]], i.e., 15 seconds.

F1: .. C-211S-1063 S-998 5-1276 ...
F2: .. C-211S-1063 S-783 S-1277 ...

Packet
e x o paaicri:g

. E1l: C-211 S-1063 S-1276
. o Pair :
® clustering E2: C-211 S-1063 S-1277
Cluster

;l ° concatenation

ol

F1 F2
(C-211, S-1063) (C-211, S-1063)
(5-1063, u) (5-1063, u)
(5-998, u) (5-783, u)
(5-1276, u) (5-1277, u)

‘ (C-211, S-1063)

size: 2
Cluster (5-1276, u)
oselection (5-1277, u)
size: 2

Fig. 2: Example describing PoirloT’s signature extraction method. Trace filtering (i.e., Step 1) was omitted for simplicity. C'
and S represent packets flowing from client (or IoT device) to cloud and the other way around, respectively.

After pairing packets for all flows in the filtered trace,
PoirloT applies an unsupervised learning algorithm (e.g.,
DBSCAN [28])) to cluster similar pairs, i.e., pairs whose packet
lengths and directions are similar (Step 4fY PoirloT then
selects clusters whose size aligns with the number of events
reported in the trace to be part of the respective event’s sig-
nature (Step 5). Finally, it concatenates pairs from subsequent
clusters (i.e., clusters whose pairs appear subsequently in their
respective flows) based on timing information to create the
actual signatures (Step 6).

Figure [2] shows an example, where two reassembled flows
(F'1 and F2) from a filtered trace are processed to generate
unique signatures (E'1 and E2) for an event F associated to
an IoT device. Note that we omit the trace filtering step (i.e.,
Step 1) for simplicity. Also, we represent packet directions as
either C' or S. The former indicates packets travelling from
client (or IoT device) to cloud and the latter packets flowing
the opposite direction.

B. Data Plane Design

The core of PoirloT is a packet processing pipeline that
deploys an FSM abstraction. Figure [3] shows the pipeline
layout as well as the overall packet flow inside the switch.
All blocks are deployed as part of the switch ingress pipe.
First, PoirloT checks whether an incoming packet is a re-
submission or not. Due to Tofino constraintsﬂ we use packet
re-submissions to update the FSM state (Set state block). In
case of a new packet, PoirloT passes it through a length filter
which will select only packets whose length matches those
of interest (i.e., are part of a device signature) for further
processing. In practice, the length filter is implemented as a
match-action table that matches packet lengths, e.g., the IPv4
total length field. Unfiltered packets are forwarded as usual.

Whenever PoirloT selects a packet for further processing
(i.e., there is a hit on the length filter), it starts applying its
fingerprinting logic. That consists of three main steps. First, it

4Like Trimananda et al. [I1]], we define similarity as the Euclidean distance
between the corresponding packet lengths from two pairs if directions match.
Otherwise, distance is maximal.

STofino restricts access to the same register to be confined into a single
pipeline stage, which restricts the operations a program can perform over the
register content in a single pass [29].

retrieves the current FSM state for the corresponding device
(Get state blockﬂ Next, PoirloT identifies the packet direction
by matching its incoming port. We consider the existence of
access and trunk ports in the switch, i.e., PoirloT is running
in a border network device. Finally, PoirloT checks whether
it should transition its current FSM state (FSM block), which
occurs when the next signature step is identified, i.e, packet
length and direction match. We provide more details on how
PoirloT’s FSM works in the next section.

All packets triggering a state transition in PoirloT’s FSM
are marked for re-submission (Set resubmit block), which
happens at the end of the pipeline. In that case, the new state
accompanies the re-submitted packet as a metadata. Parallelly,
PoirloT also keeps a timer (indeed multiple virtual timers,
one for each tracked device) as part of its FSM. Timers are
important to ensure the FSM does not get stuck at a wrong
state, e.g., due to a false positive transition (see Section
for more details). Whenever a timeout happens, the respective
timer is reset and the packet marked for re-submission to
also reset the corresponding FSM (Set timer/resubmit block).
PoirloT also resets the timer when a signature matches (i.e.,
an event/device is detected) or an FSM transitions from its
start state, both cases after an FSM hit.

C. Finite State Machine

PoirloT’s data plane implements a finite state machine
abstraction for signature matching (FSM block in Figure [3)).
This process consists of two-steps and is depicted in Figure
First, PoirloT’s controller converts a set of signatures into a
DFA. As described in Section [[V-Al every signature in the
input set consists of an unlimited sequence of <direction,
packet length> pairs (Figurefa). Each pair triggers a transition
in our DFA leading to a uniquely identified state (Figure [4b).
Also, we merge signatures with the same prefix (i.e., initial
legs) to reduce the DFA size and consequently the number of
generated rules. Ultimately, PoirloT ends up generating an

6To optimize resource usage, PoirloT deploys only a single FSM on
hardware and stores its current state individually for each tracked device.
This creates the abstraction of multiple virtual FSMs (one for each device) in
the switch. The current state is then retrieved per device by hashing relevant
traffic keys, e.g., source IP or IP/port pair in case the device is behind a NAT.

| YES

HIT
HIT Get Find ressuebtmit >
NO Lenath P state "direction > - MISS YES | Set Resubmit o
eng)
P filter —» timer/ s Ty
Timeout resubmit Fwd
—p state MISS NO -
Packet >
In
YES ot
e
> state
Fig. 3: PoirloT’s data plane layout.
V. EVALUATION
E1l: E2:
c211 co11 We implement PoirloT data plane in P4 (around 500 lines

S-1063 S-1063
S-1276 S-1277

(a)

(b)
Fig. 4: DFA for signatures E1 and E2.

Match
Action
State | Dir | Length
0 C 211 set state(1)
1 S 1063 set state(2)
2 S 1276 report_event(E1)
2 S 1277 report_event(E2)

Fig. 5: FSM transition table with entries for signatures E1 and
E2.

acyclic DFA, i.e., a tree, whose final states point to user-
defined policies like reporting the event or redirecting the
associated traffic towards an IDS.

Once the DFA is created, it is compactly implemented using
a state transition table that maps a current state, a direction and
a packet length to a next state (or a policy action in case of an
end state), as shown in Figure [5} The new state is then stored
in the register associated with the tracked device/event for
further processing of the candidate signature (Ser state block
from Figure [3). As each packet can trigger at most one state
transition in PoirloT’s FSM, it is not worth replicating the
latter to speed up the fingerprint process. Moreover, the size
of the state transition table increases linearly with the number
of signatures in the worst case, meaning a single switch can
support a large number of them (see Section for more
details). In practice, we found the state transition table to
contain no more than a few hundred entries for the scenarios
we tested.

of code) and compile it to Intel® Tofino™ ASIC [8]. Our
code is available at [9]. The control plane runs in Python
(around 300 lines of code) and translates device signatures into
commands for the switch runtime API. We use the method
outlined in Section to extract signatures directly from
traffic traces. In this section, we provide evaluation results on
PoirloT. The results demonstrate that PoirloT can accurately
detect a significant number of IoT devices (§V-B)), provides
noticeable performance improvements compared to a server-
based implementation (§V-C), and incurs a small resource
overhead on the programmable switch ASIC (§V-D).

A. Setup

Our testbed consists of a Wedge 100BF-32X 32-port pro-
grammable switch with a 3.2Tbps Tofino ASIC and two
servers each equipped with an Intel® Core™ i7-9700 CPU @
3.00GHz, 16GB RAM, and a 40Gbps Agilio® LX SmartNIC.
The servers run Ubuntu 18.04 with kernel version 4.15, and
both are directly connected to the switch. We use one server
as a traffic generator while the other runs a state-of-the-art
IoT device fingerprinting system, PingPong, for comparison
purposes.

Our workload is comprised of a real-world dataset [11]]
containing packet traces from 19 popular smart home devices
(e.g., smart plugs, light bulbs, thermostats, home security
systems) from 16 different vendors. We use fcpreplay version
4.2.6 to replay these traces in our traffic generator, which
starts multiple threads to achieve rates above 1 Gbps. Finally,
we configure PoirloT with signatures for 14 devices extracted
from the same dataset. For that, we discarded devices whose
traffic involves only phone-device communication and thus
cannot be seen by an ISP (see Section for more details
on signature types). Note that our results report PoirloT’s
performance with respect to the set of detectable devices.

B. Micro-benchmarking

Device detection. First, we evaluate the performance of
PoirloT for detecting different IoT devices. We consider a
device as detected if any of its signatures (which represent

-

o
)

Accuracy (%)
o
[}

0.4 i

02 Server =% q
PoirloT == ‘

102 03 104

1
Traffic Rate (Mbps)
Fig. 6: Amazon plug events detected.

different events) is matched. Figure [7a) shows PoirloT’s accu-
racy (or the ratio of devices detected) as we vary its timeout
interval, which is used to reset the FSM state. We can see
that the accuracy improves as we increase the timeout value,
reaching 100% (i.e., all devices detected) around 5 seconds.
Overall, longer timeouts increase the chances all packets in a
signature will show up before the FSM resets. Timeouts that
are too long, however, may cause the FSM to get stuck in a
wrong state, and consequently miss packets that are part of
a devices’ signature. For example, PoirloT’s device detection
accuracy drops to around 80% when there are no timeouts at
all, though this is a worst case scenario.

Event detection. Next, we look at how PoirloT performs
with respect to event detection, e.g., a device is on/off. The
ability to identify specific events, and ultimately the device’s
behavior, can be used by ISPs to detect misbehaving devices
and quickly react to malicious activities. For example, an ISP
could generate signatures for compromised devices and use
them to detect attempts to exfiltrate data or contact a command
and control server in a botnet [30], all at line rate and with
no need to inspect the packet’s payload.

Figure [7b| shows PoirloT’s event detection accuracy as we
vary its timeout. Similar to device detection, longer timeouts
(above 500 ms for the evaluated dataset) tend to produce better
results, while overestimated ones may lead to blocking the
FSM and consequently missing relevant events. Interestingly,
PoirloT’s event detection accuracy peaked at 71% for the
evaluated dataset, meaning that even for the same device some
events may be detected while others may not once we set
a timeout. To better understand this effect, we investigate
PoirloT’s event detection accuracy for each device in the
evaluated dataset.

Figure [§] shows the results for a timeout of 5 seconds. As
we can see, there is a large variation in the detection accuracy,
ranging from 13% in the worst case (Ring alarm) to 100% in
the other extreme (e.g., D-Link plug). This is mainly due to
the fact that different events (e.g., switching on and off) or
even the same event (e.g., a motion event) can have different
duration on the same device, so a single timeout value may
not be the most appropriate choice. We discuss further timeout
policies in Section

SR - ’

3061 4 Bos| =

50'4 - . 50'4 - -

802 - 4 8024 .

< 0 Ll Ll L < 0 Ll Ll N
10? 102 108 104 10" 102 108

10*
Timeout (ms) Timeout (ms)

(@ (b)

Fig. 7: PoirloT’s accuracy for detecting different IoT devices
(a) and their particular events (b).

-

s
Ef0.8
oy
Y06
5
8 0.4
< 0.2
0
& S [\ Q, 2 Q
%O 2 ,%047’/0 0 %O 4@‘9,42‘/46\006 0)‘9’7’7)@ <, A\(,’(,;)
%%, % Q, %0, 2. % See Qo xS0, Koy K
O 08, %y, 0. % Ry o e R, % Y, Vi
G, % D 1% o % 8, s % © o &
& T B R Ry
o A

Device Types

Fig. 8: Events detected per device using a 5s timeout.

C. Performance improvement

To assess the benefits of moving IoT device fingerprinting
to a programmable switch, we compare PoirloT with Ping-
Pong [[L1], a state-of-the-art server-based device fingerprinting
system. For this experiment, we send a stream of packets
containing a single device capture at varying speeds and report
the ratio of detected events for both PoirloT and PingPong
(server). We use a single device capture (rather than an all
device scenario) to isolate the effect of an increasing load on
the detection accuracy and hence ensure a fair comparison.
Note that we report results for Amazon Plug as its event
detection accuracy is close to 100% for both systems (i.e.,
server and switch-based) under low loads, which enables
us to easily observe performance variations. All devices we
tested (fourteen in total) have shown a similar trend. Figure
[6] presents the results. As we can see, PingPong’s accuracy
drops significantly, down to 15.5%, as the rate increases.
This reduction is mainly because packets start getting dropped
once the rate exceeds the server’s buffering and processing
capacity, which compromises the signature matching process.
The switch, on the other hand, can operate at line rate and
thus is able to maintain its accuracy even under high loads.

D. Resource usage

Next, we evaluate how much ASIC resources PoirloT
consumes based on the P4 compiler’s output. Table |I| shows
the results. Overall, our system consumes less than 5% of
the ASIC resources leaving ample room for other network
functions (e.g., routing, load balancing). Memory is the most
occupied resource as PoirloT needs to store both state and

TABLE I: Resource utilization.

Resource Usage
Match Crossbar 3.1%
SRAM 5.1%
TCAM 0%
VLIW Instruction 3.4%
Hash Bits 4.7%
__500 &~500
‘_"5’3 400 1. g 400
E 2 300 -] E ; 300 T/VIDE Trace]
8 8200 - <t 885200 F =
2100 - - E%100 - .
4 g, 0 | | 4 E 0 | |
n 0 20 40 60 o 0 20 40 60
Memory (Mbits) © Memory (Mbits)
() (b)
Fig. 9: Number of (a) signatures and (b) connections PoirloT

can support for a given amount of memory. Results depict
the worst case scenario (i.e., a uniform distribution of packet
sizes).

timing information for every device it is trying to detect. In
particular, the 5.1% SRAM usage can support the detection
of up to 65K simultaneous devices (an average of 4 devices
per household on a typical ISP network [31]]). This value can
be tweaked based on the network size though, as the switch
has capacity to track hundreds of thousands of devices (see
Figure Ob] and the discussion in the next section).

E. Scalability

Finally, we analyze how our system performs at a large
scale. For that, we generate a synthetic set of 4-way signa-
tures (i.e., signatures of length four) as an extension to our
original signature set, and test the resulting FSM on the same
dataset described in Section Packet sizes from synthetic
signatures follow either a uniform or a derived distribution, the
latter mimicking the distribution of our original signature set.
Note that the uniform distribution is useful to assess a worst
case scenario with respect to both resource consumption and
wrong state transitions (i.e., false positives and negatives) as
it maximizes the chances of erroneously matching a packet.
In addition to an increased number of signatures, we also
play with a larger (non IoT-based) dataset to analyze how
the background traffic impacts PoirloT’s performance. More
specifically, we replay a whole day of traffic (September
11, 2021) captured from a transit link as part of the WIDE
project [32]. This trace contains more than 35M packets spread
over approximately 70K connections.

Signature set. Increasing the number of signatures in
PoirloT’s FSM demands additional resources from the un-
derlying switch ASIC, particularly memory. In this sense,
Figure [9a| shows the number of signatures PoirloT can support
as we vary the amount of available memory. For simplicity, we
only show results for the worst case scenario (i.e., signatures
generated based on a uniform distribution of packet sizes). In

this scenario, chances of merging two FSM states are minimal
and consequently the amount of generated rules is maximal.
As we can see, PoirloT has ample room for device signatures,
supporting more than 35K on a single pipeline stage (i.e.,
10 Mbits of memory). In practice, providers may not need
more than a few hundred signatures to track the most relevant
devices (e.g., the ones with known critical vulnerabilities
or frequently involved in DDoS attacks) depending on their
policy [3].

Tracked connections. In addition to signatures, PoirloT
also consumes significant amount of ASIC resources for
connection tracking. More specifically, our system fingerprints
each connection independently and requires a register per
connection to store its state and corresponding timing infor-
mation. The latter is necessary to implement PoirloT’s timeout
mechanism. Also, PoirloT uses connection information at
different stages in the packet processing pipeline, meaning the
same information must be stored at multiple points (twice in
our case) due to constraints on how Tofino manipulates state
[29].

Figure shows the number of connections PoirloT can
track as we vary the available memory. Note that the required
memory splits over two pipeline stages in our design. We
can observe that PoirloT is able to track more than 400K
connections, largely above current demand on average-sized
ISPs [31]. To put this result in perspective, we also plot the
memory requirement for tracking relevant IP connections (i.e.,
connections where at least one packet hits an entry in PoirloT’s
length filter) in a whole day of traffic from the WIDE trace.
As we can see, the demand is around 10 Mbits which fits
well into the switch memory capacity. Interestingly, PoirloT
requires more memory to store a signature than a connection
state, which stems from the fact that a single signature can
span over multiple forwarding rules in PoirloT’s FSM.

Detection accuracy. We also assess the effect of a growing
number of signatures on PoirloT’s accuracy. Intuitively, the
larger the number of signatures the higher the chances of
making wrong transitions and consequently missing an IoT
device or event. Figure [10| shows PoirloT’s device detection
accuracy as we vary its number of signatures. We can see
that PoirloT is able to sustain high accuracy (i.e., close to
100%) up to 250 signatures. Beyond that, accuracy starts
gradually degrading due to the higher chances of false positive
transitions. To put our scale in perspective, the Mirai botnet
has around ninety identified IoT devices [3l], and the dashed
green line in the figure shows the number of signatures derived
from our working IoT dataset (see Section [V-A). We can also
observe that PoirloT’s accuracy degradation is more prominent
for signatures following a uniform packet size distribution (up
to 15% worse at 550 signatures), meaning it can perform
reasonably better at a large scale if the signature set is tuned
to a particular group of devices (e.g., the most common ones
in a given botnet).

Figure depicts PoirloT’s event detection accuracy as
we increase the number of signatures. Similarly to device
detection, accuracy tends to be better (up to 20% higher) for

S .

B l

o O.

- 1

o '

m 1

2

o |

(=] '

n 041" b

(] 1

2 '

2021, Uniform =% 7

o 0 ' ‘ ‘ Pinngng -+
0 150 250 350 450 550

Total Signatures

Fig. 10: PoirloT’s device detection accuracy for an increasing
number of generated signatures. Dashed line indicates the
number of real signatures extracted from PingPong dataset.

Uniférm >
PingPong —+

-
T

o
©
T

°
i

Events Detected (%)
=} =}
N [}

1 1 1 1
0 150 250 350 450 550
Total Signatures

o

Fig. 11: PoirloT’s event detection accuracy for an increasing
number of generated signatures. Dashed line indicates the
number of real signatures extracted from PingPong dataset.

targeted, i.e., non-uniform, signatures. However, event detec-
tion performance is considerably worse at scale, dropping to
an around 20% accuracy in the worst case. That stems mainly
from the fact event detection requires fine-grained packet
identification (i.e., identifying all packets from an event) to
succeed while it suffices identifying a single event to detect an
IoT device. Despite the low accuracy, it is possible to augment
PoirloT’s event detection capabilities by, e.g., splitting its FSM
into multiple smaller ones. We leave investigating that as future
work.

VI. DISCUSSION

Flexible timeout policies. PoirloT’s timeout mechanism
may be negatively impacted when: i) IoT devices have sig-
nificantly different communication patterns (e.g., in terms of
request-reply intervals); or ii) network delays due to conges-
tion or quality of service queuing are at the same timescale
as device activities. While longer timeouts have shown to
perform better in our evaluated scenarios, there is a turning
point where accuracy starts decreasing as the whole system
may get stuck at a wrong state (e.g., due to a false positive
packet). An alternative would be implementing more flexible
timeout policies (e.g., based on exponential backoff), but that
requires re-engineering our data plane design. Moreover, more
complex policies tend to also require more resources which

may not always be feasible in a programmable switch ASIC.
We leave investigating the implementation and evaluation of
such policies in the switch data plane as future work.

Signature extraction. Usually, there are three main types of
traffic exchanges in an [oT application: device—phone, device—
cloud, and phone—cloud communication [11]. In theory, a
signature could contain packets of any of these types, though in
practice that is not always possible. First, device—phone traffic
can frequently only be seen at a local area network, making it
more difficult for an ISP to (having the client’s consent) run a
monitoring solution at every single home. Second, phones are
actually mobile appliances that may not always be hosted on
the same network as its paired IoT device. That also makes
signatures based on phone—cloud communication less reliable,
though they would still work when a client is at home. As part
of our future work, we plan to investigate better algorithms for
extracting signatures from a bigger set of IoT devices.

Ethical and privacy considerations. The ability to fin-
gerprint IoT devices in the wild may raise ethical/privacy
concerns. However, the main goal of this paper is not to enable
ISP/network providers to inspect client information without
their consent. Instead, deployments should be in compliance
with applicable laws (e.g., GPDR [33]) and only collect
data from clients that have explicitly agreed to share it. We
envision PoirloT to be used in a constructive manner, to
help both providers and clients improve their network security
capabilities (e.g., by identifying and patching vulnerable IoT
devices). Ideally, clients would need to enroll in an opt-in
process to have their homes monitored by ISPs. If that is not
the case (e.g., when ISPs are adversarial), an alternative is to
deploy obfuscation mechanisms such as traffic padding [15]]
or blocking [34] to prevent device fingerprinting.

VII. CONCLUSION

As the popularity of household IoT devices continues to
grow, so to does the potential for misuse and security breaches.
To mitigate the threat presented by compromised [oT devices,
the solutions must expand as well. As part of this expansion,
we present PoirloT an in-network system for fingerprinting
IoT devices. This system uses signatures derived from device-
cloud exchanges to uniquely identify a device. By utilizing the
capabilities of programmable switches, our system can inspect
every packet that passes through it, enabling high granularity
detection at rapid speeds. This work is the first step in realizing
a complete, detection to intervention, in-network system for
protecting against malicious IoT traffic.

Acknowledgements. We thank Pulkit Garg for his contribu-
tions on early stages of this work. This research is supported
by NSERC CGS-M and Discovery Grants.

REFERENCES

[1] S. Stasha, “An in-depth view into smart home statistics,”
2021. [Online]. Available: https://policyadvice.net/insurance/insights/
smart-home- statistics/

[2] K. L. Lueth, “Iot 2020 in review: The 10 most relevant iot
developments of the year,” loTAnalytics, Jan 2021. [Online]. Available:
https://iot-analytics.com/iot-2020-1in-review/

https://policyadvice.net/insurance/insights/smart-home-statistics/
https://policyadvice.net/insurance/insights/smart-home-statistics/
https://iot-analytics.com/iot-2020-in-review/

[3]

[4]

[5]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

[18]

[20]

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai botnet,”
in Proceedings of the 26th USENIX Conference on Security Symposium,
ser. SEC’17. USA: USENIX Association, 2017, p. 1093-1110.

G. Chu, N. Apthorpe, and N. Feamster, “Security and privacy analyses
of internet of things children’s toys,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 978-985, 2019.

S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois,
D. Choffnes, G. Smaragdakis, and A. Feldmann, “A haystack full of
needles: Scalable detection of iot devices in the wild,” in Proceedings
of the ACM Internet Measurement Conference, ser. IMC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 87-100.

A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
ser. WiSec ’20, 2020, p. 207-218.

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, p. 87-95, Jul. 2014.

Intel, “Intel tofino,” 2021. [Online]. Avail-
able: |https://www.intel.com/content/www/us/en/products/network-io/
programmable-ethernet-switch.html

P. Authors, “Poiriot implementation,” 2021.
https://github.com/PINetDalhousie/poiriot

D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot inspec-
tor: Crowdsourcing labeled network traffic from smart home devices at
scale,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 4,
no. 2, Jun. 2020.

R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky,
“Packet-Level Signatures for Smart Home Devices,” Proceedings of
the 2020 Network and Distributed System Security (NDSS) Symposium,
February 2020.

S. Leibson, “Aps networks launches three openbng broadband
network gateways incorporating intel® xeon® d processors, intel®)
tofino™ switch asics, and intel® stratix® 10 mx fpgas,” Intel
Programmable Logic, Jun 2021. [Online]. Available: https://blogs.intel.
com/psg/aps-networks-launches-three- openbng-broadband-network- \
gateways-incorporating-intel-xeon-d-processors-intel- tofino-switch'\
-asics-and-intel-stratix- 10-mx-fpgas/

Y. Zhao, K. Yang, Z. Liu, T. Yang, L. Chen, S. Liu, N. Zheng, R. Wang,
H. Wu, Y. Wang, and N. Zhang, “Lightguardian: A full-visibility,
lightweight, in-band telemetry system using sketchlets,” in /8th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
21), Apr. 2021, pp. 991-1010.

H. Guo and J. Heidemann, “Detecting iot devices in the internet,”
IEEE/ACM Transactions on Networking, vol. 28, no. 5, pp. 2323-2336,
2020.

N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and
N. Feamster, “Keeping the smart home private with smart(er) iot
traffic shaping,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 3, pp. 128-148, 2019. [Online]. Available: https:
//doi.org/10.2478/popets-2019-0040

T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-
R. Sadeghi, “Homesnitch: Behavior transparency and control for smart
home iot devices,” in Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks, ser. WiSec *19, 2019, p.
128-138.

A. Bremler-Barr, H. Levy, and Z. Yakhini, “Iot or not: Identifying iot
devices in a short time scale,” in NOMS 2020 - 2020 IEEE/IFIP Network
Operations and Management Symposium, 2020, pp. 1-9.

D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich, D. Kuznetsov,
R. Gupta, and Z. Durumeric, “All things considered: An analysis of
C. Duan, S. Zhang, J. Yang, Z. Wang, Y. Yang, and J. Li, “Pinball:
Universal and robust signature extraction for smart home devices,”

[Online]. Available:

[19]

(21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

[32]

[33]

(34]

iot devices on home networks,” in 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, Aug. 2019, pp. 1169-1185.
Y. Afek, A. Bremler-Barr, D. Hay, R. Goldschmidt, L. Shafir, G. Avra-
ham, and A. Shalev, “Nfv-based iot security for home networks using
mud,” in NOMS 2020 - 2020 IEEE/IFIP Network Operations and
Management Symposium, 2020, pp. 1-9.

in 2021 IFIP/IEEE International Symposium on Integrated Network
Management (IM), 2021, pp. 1-9.

S. Bai, H. Kim, and J. Rexford, “Passive os fingerprinting on
commodity switches,” 2019. [Online]. Available: https://www.cs.
princeton.edu/~jrex/papers/p40f.pdf

J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by domain name in
the data plane,” in Proceedings of the Symposium on SDN Research,
ser. SOSR ’21. New York, NY, USA: Association for Computing
Machinery, 2021.

T. Jepsen, D. Alvarez, N. Foster, C. Kim, J. Lee, M. Moshref, and
R. Soulé, “Fast string searching on pisa,” in Proceedings of the 2019
ACM Symposium on SDN Research, ser. SOSR "19. New York, NY,
USA: Association for Computing Machinery, 2019, p. 21-28.

R. Kundel, L. Nobach, J. Blendin, H.-J. Kolbe, G. Schyguda, V. Gure-
vich, B. Koldehofe, and R. Steinmetz, “P4-bng: Central office network
functions on programmable packet pipelines,” in 2019 15th International
Conference on Network and Service Management (CNSM), 2019, pp. 1-
9.

J. Hu, Z. Zhou, X. Yang, J. Malone, and J. W. Williams, “Cablemon:
Improving the reliability of cable broadband networks via proactive
network maintenance,” in [7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). Santa Clara, CA:
USENIX Association, Feb. 2020, pp. 619-632.

H. Gordon, C. Batula, B. Tushir, B. Dezfouli, and Y. Liu, “Secur-
ing smart homes via software-defined networking and low-cost traffic
classification,” in 202/ IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), 2021, pp. 1049-1057.

A. J. Pinheiro, J. de M. Bezerra, C. A. Burgardt, and D. R. Campelo,
“Identifying iot devices and events based on packet length from en-
crypted traffic,” Computer Communications, vol. 144, pp. 8-17, 2019.
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based al-
gorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, p.
226-231.

N. Gebara, A. Lerner, M. Yang, M. Yu, P. Costa, and M. Ghobadi,
“Challenging the stateless quo of programmable switches,” in
Proceedings of the 19th ACM Workshop on Hot Topics in Networks,
ser. HotNets "20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 153-159. [Online]. Available: https://doi.org/10.
1145/3422604.3425928

O. Alrawi, C. Lever, K. Valakuzhy, R. Court, K. Snow, F. Monrose,
and M. Antonakakis, “The circle of life: A large-scale study of the
iot malware lifecycle,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021.

M. Trevisan, D. Giordano, I. Drago, M. M. Munafo, and M. Mellia,
“Five years at the edge: Watching internet from the isp network,”
IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 561-574,
2020.

K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the wide
project,” in USENIX 2000 FREENIX Track, San Diego, CA, June 2000.
Council of European Union, “Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the protection of
natural persons with regard to the processing of personal data and on
the free movement of such data, and repealing directive 95/46/ec (general
data protection regulation),” OJ, vol. L 119, pp. 1-88, 2016-05-04.

A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha, H. Haddadi,
and D. R. Choffnes, “Blocking without breaking: Identification and
mitigation of non-essential iot traffic,” CoRR, vol. abs/2105.05162,

2021. [Online]. Available: https://arxiv.org/abs/2105.05162

https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://github.com/PINetDalhousie/poiriot
https://blogs.intel.com/psg/aps-networks-launches-three-openbng-broadband-network- \ gateways-incorporating-intel-xeon-d-processors-intel-tofino-switch \ -asics-and-intel-stratix-10-mx-fpgas/
https://blogs.intel.com/psg/aps-networks-launches-three-openbng-broadband-network- \ gateways-incorporating-intel-xeon-d-processors-intel-tofino-switch \ -asics-and-intel-stratix-10-mx-fpgas/
https://blogs.intel.com/psg/aps-networks-launches-three-openbng-broadband-network- \ gateways-incorporating-intel-xeon-d-processors-intel-tofino-switch \ -asics-and-intel-stratix-10-mx-fpgas/
https://blogs.intel.com/psg/aps-networks-launches-three-openbng-broadband-network- \ gateways-incorporating-intel-xeon-d-processors-intel-tofino-switch \ -asics-and-intel-stratix-10-mx-fpgas/
https://doi.org/10.2478/popets-2019-0040
https://doi.org/10.2478/popets-2019-0040
https://www.cs.princeton.edu/~jrex/papers/p40f.pdf
https://www.cs.princeton.edu/~jrex/papers/p40f.pdf
https://doi.org/10.1145/3422604.3425928
https://doi.org/10.1145/3422604.3425928
https://arxiv.org/abs/2105.05162

	Introduction
	Motivation
	Related work
	PoirIoT Design
	Signature extraction at PoirIoT's controller
	Data Plane Design
	Finite State Machine

	Evaluation
	Setup
	Micro-benchmarking
	Performance improvement
	Resource usage
	Scalability

	Discussion
	conclusion
	References

